

ISO 527-1/-2

Hytrel® 5556 ECO-B 352

THERMOPLASTIC POLYESTER ELASTOMER

Common features of Hytrel® thermoplastic polyester elastomer include mechanical and physical properties such as exceptional toughness and resilience, high resistance to creep, impact and flex fatigue, flexibility at low temperatures and good retention of properties at elevated temperatures. In addition, it resists many industrial chemicals, oils and solvents. Special grades include heat stabilised, flame retardant, food contact compliant, blow molding and extrusion grades. Concentrates offered include black pigments, UV protection additives, heat stabilisers, and flame retardants. Hytrel® thermoplastic polyester elastomer is plasticiser free.

The good melt stability of Hytrel® thermoplastic polyester elastomer normally enables the recycling of properly handled production waste. If recycling is not possible, we recommend, as the preferred option, incineration with energy recovery (-24 kJ/g of base polymer) in appropriately equipped installations. For disposal, local regulations have to be observed.

Hytrel® thermoplastic polyester elastomer typically is used in demanding applications in the automotive, fluid power, electrical/electronic, consumer goods, appliance and power tool, sporting goods, furniture, industrial and off-road transportation/equipment industry.

Hytrel® 5556 ECO-B 352 is a medium modulus Hytrel® grade with nominal durometer hardness of 55D. It contains nondiscoloring stabilizer. It can be processed by many conventional thermoplastic processing techniques like injection moulding and extrusion. It has same performance and processing properties as Hytrel® 5556.

Hytrel® 5556 ECO-B 352 belongs to the Hytrel® ECO-B family. The products of this family are partially produced using biofeedstock derived from waste*. This results in reduced lifecycle greenhouse gas emissions and lower fossil resource use.

Typical applications: Hose and tubing, wire and cable, film and sheeting, belting.

2-Pagers

Rheological properties

Stress at 10% strain

Melt volume-flow rate	7	cm ³ /10min	ISO 1133
Temperature	220	°C	
Load	2.16	kg	
Melt mass-flow rate	7.8	g/10min	ISO 1133
Melt mass-flow rate, Temperature	220	°C	
Melt mass-flow rate, Load	2.16	kg	
Moulding shrinkage, parallel	1.4	%	ISO 294-4, 2577
Moulding shrinkage, normal	1.4	%	ISO 294-4, 2577
Typical mechanical properties			
Tensile modulus	180	MPa	ISO 527-1/-2
Tensile stress at yield	15	MPa	ISO 527-1/-2
Tensile strain at yield	40	%	ISO 527-1/-2
Stress at 5% strain	6.9	MPa	ISO 527-1/-2

11 MPa

Printed: 2025-05-30 Page: 1 of 18

^{*}certified bio-circular according to ISCC Plus mass balance approach.

THERMOPLASTIC POLYESTER ELASTOMER

Tensile stress at 50% strain, 1BA	14.5	MPa	ISO 527-1/-2
Tensile stress at 100% strain	16	MPa	ISO 527-1/-2
Tensile stress at break		MPa	ISO 527-1/-2
Nominal strain at break	600		ISO 527-1/-2
Tensile strain at break	>300		ISO 527-1/-2
Flexural modulus		MPa	ISO 178
Tensile creep modulus, 1h		MPa	ISO 899-1
Tensile creep modulus, 1000h		MPa	ISO 899-1
Charpy impact strength, 23°C		kJ/m²	ISO 179/1eU
Charpy impact strength, -30 °C		kJ/m ²	ISO 179/1eU
Charpy notched impact strength, 23°C		kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C		kJ/m²	ISO 179/1eA
Charpy notched impact strength, -40°C		kJ/m ²	ISO 179/1eA
Tensile notched impact strength, 23°C		kJ/m²	ISO 8256/1
Puncture - maximum force, 23°C	2400		ISO 6603-2
Puncture - maximum force, -30°C	3700		ISO 6603-2
Puncture energy, 23°C	27		ISO 6603-2
Puncture energy, -30 °C	43		ISO 6603-2
Izod notched impact strength, 23°C		kJ/m²	ISO 180/1A
Izod notched impact strength, -40°C		kJ/m²	ISO 180/1A
Poisson's ratio	0.48		
Brittleness temperature	-98	°C	ISO 974
Shore D hardness, 15s	51		ISO 48-4 / ISO 868
Shore D hardness, max	55		ISO 868
Tear strength, parallel		kN/m	ISO 34-1
Tear strength, normal		kN/m	ISO 34-1
Abrasion resistance	120	mm ³	ISO 4649
[P]: Partial Break			
Thermal properties			
Melting temperature, 10°C/min	201	°C	ISO 11357-1/-3
Glass transition temperature, 10°C/min	-25	°C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	45	°C	ISO 75-1/-2
Temperature of deflection under load, 0.45 MPa	70	°C	ISO 75-1/-2
Vicat softening temperature, 50 °C/h 50N		°C	ISO 306
Vicat softening temperature, 50°C/h 10N	180	°C	ISO 306
Coeff. of linear therm. expansion, parallel, -40-23°C	160	E-6/K	ISO 11359-1/-2
Coefficient of linear thermal expansion	180	E-6/K	ISO 11359-1/-2
(CLTE), parallel			
Coeff. of linear therm. expansion, normal, -40-23°C	174	E-6/K	ISO 11359-1/-2
Coefficient of linear thermal expansion (CLTE),	180	E-6/K	ISO 11359-1/-2
normal			
Thermal conductivity of melt	0.16	W/(m K)	ISO 22007-2
Effective thermal diffusivity, flow	7E-8		ISO 22007-4
Specific heat capacity of melt		J/(kg K)	ISO 22007-4
RTI, electrical, 0.75mm		°C	UL 746B
RTI, electrical, 1.5mm		°C	UL 746B
RTI, electrical, 3.0mm		°C	UL 746B
RTI, impact, 0.75mm		°C	UL 746B

Printed: 2025-05-30 Page: 2 of 18

THERMOPLASTIC POLYESTER ELASTOMER

RTI, impact, 1.5mm RTI, impact, 3.0mm RTI, strength, 0.75mm RTI, strength, 1.5mm RTI, strength, 3.0mm	85 50 75	°C °C °C °C	UL 746B UL 746B UL 746B UL 746B UL 746B
Flammability Burning Behav. at 1.5mm nom. thickn. Thickness tested UL recognition Burning Behav. at thickness h Thickness tested UL recognition Oxygen index Glow Wire Flammability Index, 2.0mm Glow Wire Ignition Temperature, 2.0mm Glow Wire Temperature, No Flame, 2mm FMVSS Class [DS]: Derived from similar grade	1.5 yes HB	°C	IEC 60695-11-10 IEC 60695-11-10 UL 94 IEC 60695-11-10 IEC 60695-11-10 UL 94 ISO 4589-1/-2 IEC 60695-2-12 IEC 60695-2-13 IEC 60335-1 ISO 3795 (FMVSS 302)
Electrical properties Relative permittivity, 100Hz Relative permittivity, 1MHz Dissipation factor, 100Hz Dissipation factor, 1MHz Volume resistivity Surface resistivity Electric strength Comparative tracking index	375 4E11 >1E15	Ohm.m	IEC 62631-2-1 IEC 62631-2-1 IEC 62631-2-1 IEC 62631-2-1 IEC 62631-3-1 IEC 62631-3-2 IEC 60243-1 IEC 60112
Physical/Other properties Humidity absorption, 2mm Water absorption, 2mm Water absorption, Immersion 24h Density Density of melt Film Properties WVTR, 23°C/85%r.h.	1030	% % kg/m³ kg/m³	Sim. to ISO 62 Sim. to ISO 62 Sim. to ISO 62 ISO 1183
Oxygen transmission rate, 23 °C/85%r.h. Thickness of specimen VDA Properties Light stability delta I Light stability delta a Light stability delta b Light stability delta E		cm ³ /(m ² *d*bar)	DIS 15105-1/-2 DIN 53236 DIN 53236 DIN 53236 DIN 53236

Printed: 2025-05-30 Page: 3 of 18

THERMOPLASTIC POLYESTER ELASTOMER

Emission of organic compounds	8.5 μgC/g	VDA 277
Odour	5 class	VDA 270
Fogging, G-value (condensate)	0.1 mg	ISO 6452

Injection

Drying Recommended	yes
Drying Temperature	100 °C
Drying Time, Dehumidified Dryer	2-3 h
Processing Moisture Content	≤0.08 %
Melt Temperature Optimum	230 °C
Min. melt temperature	220 °C
Max. melt temperature	250 °C
Mold Temperature Optimum	45 °C
Min. mould temperature	45 °C
Max. mould temperature	55 °C

Extrusion

Drying Temperature	90 - 110	°C
Drying Time, Dehumidified Dryer	2 - 3	h
Processing Moisture Content	≤0.06	%
Melt Temperature Optimum	225	°C
Melt Temperature Range	220 - 235	°C

Characteristics

Processing Injection Moulding, Film Extrusion, Extrusion, Sheet Extrusion, Other Extrusion,

Coatable, Casting, Thermoforming

Delivery form Pellets

Special characteristics Light stabilised or stable to light

Sustainability Bio-Content

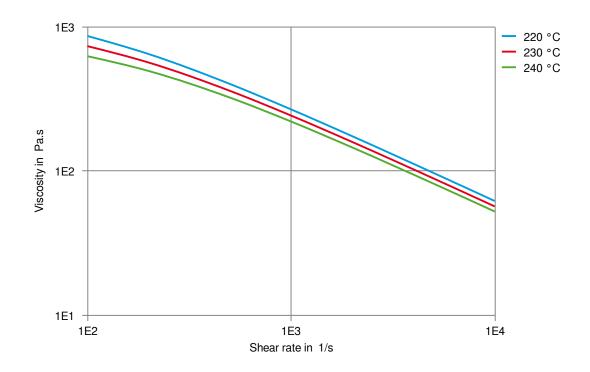
Automotive

 OEM
 STANDARD

 Bosch
 N28 BN34-OX067

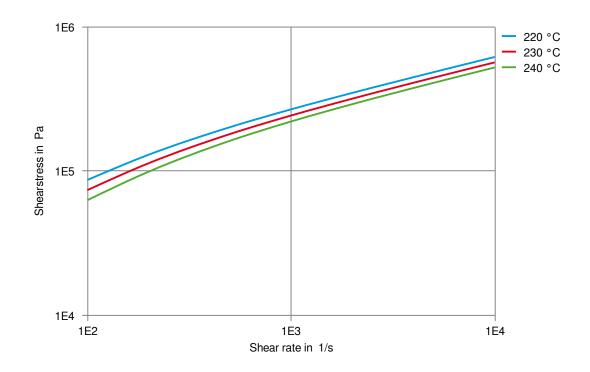
 Mercedes-Benz
 DBL5562 TPC

 VW Group
 VW 50123 TPC-ET


Printed: 2025-05-30 Page: 4 of 18

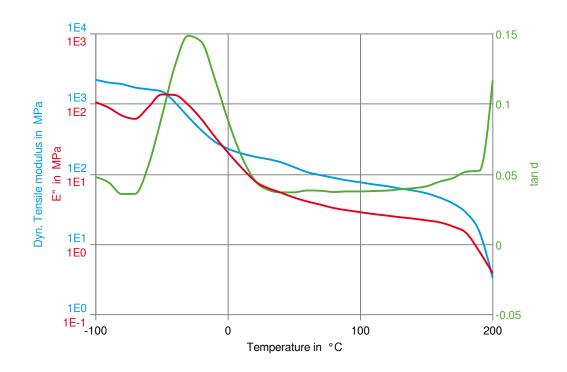
THERMOPLASTIC POLYESTER ELASTOMER

Viscosity-shear rate


Printed: 2025-05-30 Page: 5 of 18

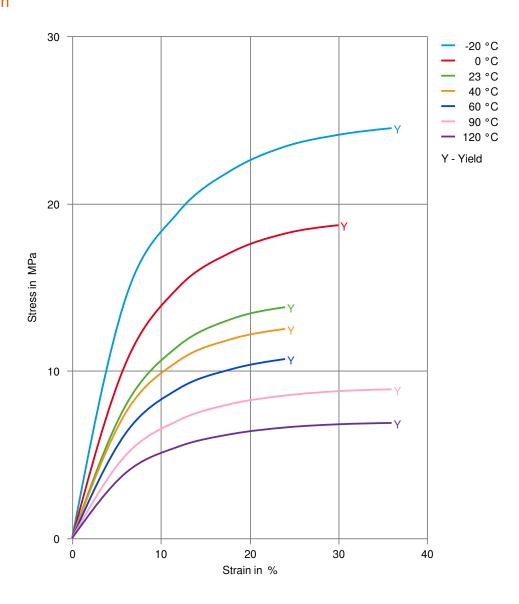
THERMOPLASTIC POLYESTER ELASTOMER

Shearstress-shear rate


Printed: 2025-05-30 Page: 6 of 18

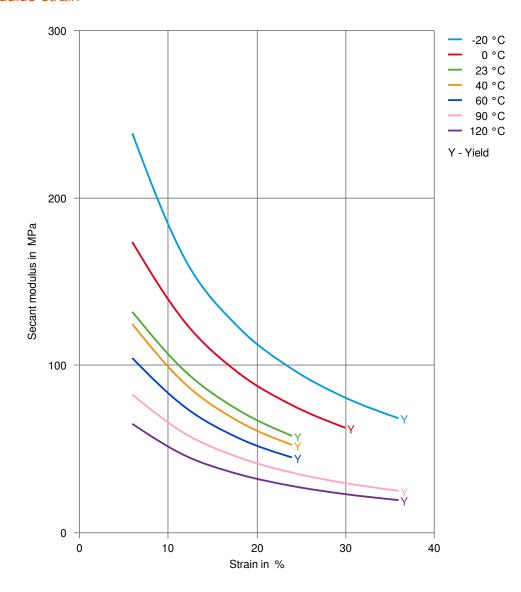
THERMOPLASTIC POLYESTER ELASTOMER

Dynamic Tensile modulus-temperature


Printed: 2025-05-30 Page: 7 of 18

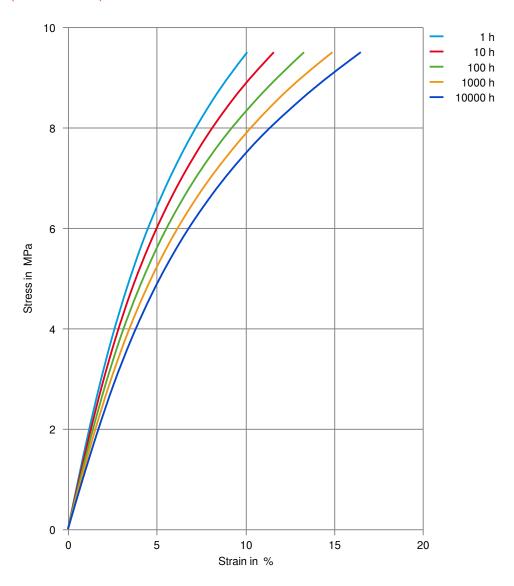
THERMOPLASTIC POLYESTER ELASTOMER

Stress-strain


Printed: 2025-05-30 Page: 8 of 18

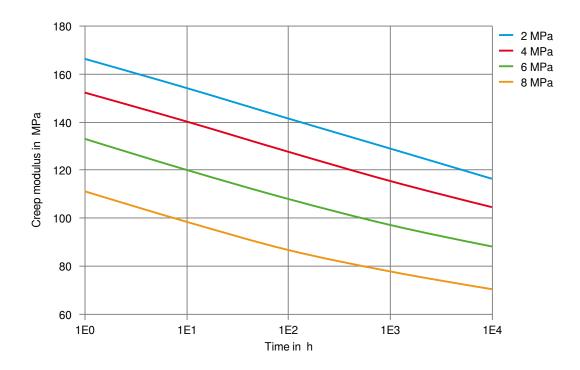
THERMOPLASTIC POLYESTER ELASTOMER

Secant modulus-strain


Printed: 2025-05-30 Page: 9 of 18

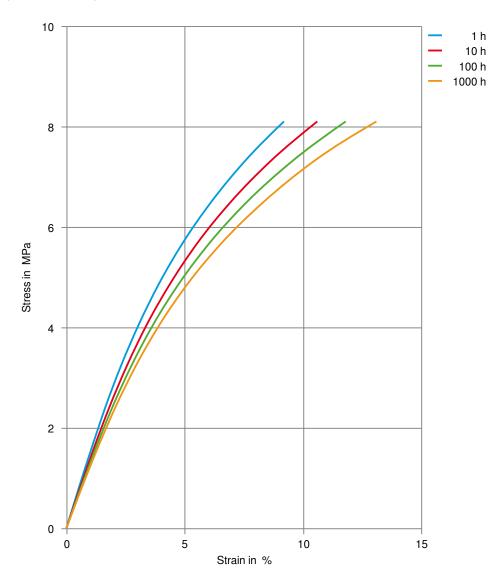
THERMOPLASTIC POLYESTER ELASTOMER

Stress-strain (isochronous) 23°C


Printed: 2025-05-30 Page: 10 of 18

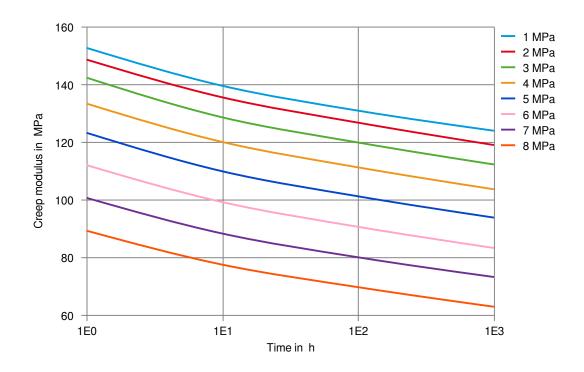
THERMOPLASTIC POLYESTER ELASTOMER

Creep modulus-time 23°C


Printed: 2025-05-30 Page: 11 of 18

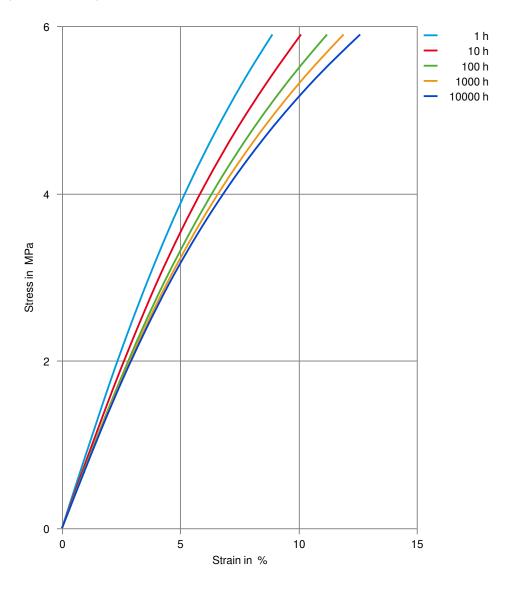
THERMOPLASTIC POLYESTER ELASTOMER

Stress-strain (isochronous) 40°C


Printed: 2025-05-30 Page: 12 of 18

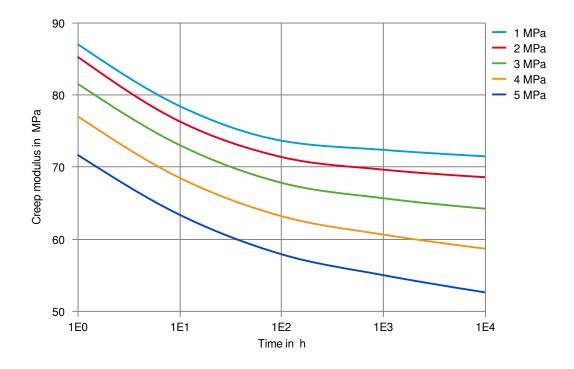
THERMOPLASTIC POLYESTER ELASTOMER

Creep modulus-time 40°C


Printed: 2025-05-30 Page: 13 of 18

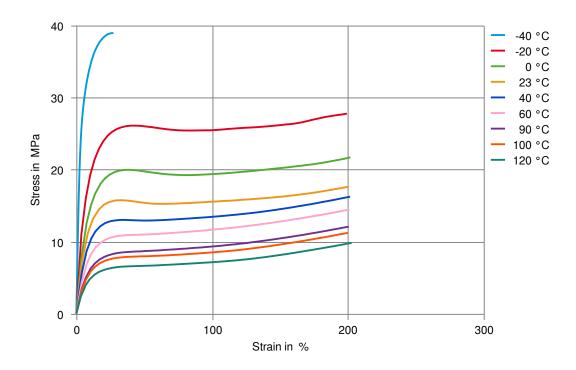
THERMOPLASTIC POLYESTER ELASTOMER

Stress-strain (isochronous) 80°C


Printed: 2025-05-30 Page: 14 of 18

THERMOPLASTIC POLYESTER ELASTOMER

Creep modulus-time 80°C


Printed: 2025-05-30 Page: 15 of 18

THERMOPLASTIC POLYESTER ELASTOMER

Stress-Strain (Flexible Materials)

Printed: 2025-05-30 Page: 16 of 18

THERMOPLASTIC POLYESTER ELASTOMER

Chemical Media Resistance

Acids

- ✓ Acetic Acid (5% by mass), 23°C
- ✓ Citric Acid solution (10% by mass), 23°C
- ✓ Lactic Acid (10% by mass), 23°C
- X Hydrochloric Acid (36% by mass), 23°C
- X Nitric Acid (40% by mass), 23°C
- X Sulfuric Acid (38% by mass), 23°C
- ✓ Sulfuric Acid (5% by mass), 23°C
- X Chromic Acid solution (40% by mass), 23°C

Bases

- ✓ Sodium Hydroxide solution (35% by mass), 23°C
- ✓ Sodium Hydroxide solution (1% by mass), 23°C
- ✓ Ammonium Hydroxide solution (10% by mass), 23°C

Alcohols

- ✓ Isopropyl alcohol, 23°C
- ✓ Methanol, 23°C
- ✓ Ethanol, 23°C

Hydrocarbons

- ✓ n-Hexane, 23°C
- ✓ Toluene, 23°C
- ✓ iso-Octane, 23°C

Ketones

X Acetone, 23°C

Ethers

X Diethyl ether, 23°C

Mineral oils

- ✓ SAE 10W40 multigrade motor oil, 23°C
- X SAE 10W40 multigrade motor oil, 130°C
- X SAE 80/90 hypoid-gear oil, 130°C
- ✓ Insulating Oil, 23°C
- X Motor oil OS206 304 Ref.Eng.Oil, ISP, 135°C
- ★ Automatic hypoid-gear oil Shell Donax TX, 135°C
- X Hydraulic oil Pentosin CHF 202, 125°C

Standard Fuels

- X ISO 1817 Liquid 1 E5, 60°C
- X ISO 1817 Liquid 2 M15E4, 60°C
- X ISO 1817 Liquid 3 M3E7, 60°C
- X ISO 1817 Liquid 4 M15, 60°C
- ✓ Standard fuel without alcohol (pref. ISO 1817 Liquid C), 23°C
- ✓ Standard fuel with alcohol (pref. ISO 1817 Liquid 4), 23°C
- ✓ Diesel fuel (pref. ISO 1817 Liquid F), 23°C
- ✓ Diesel fuel (pref. ISO 1817 Liquid F), 90°C
- ➤ Diesel fuel (pref. ISO 1817 Liquid F), >90°C

Printed: 2025-05-30 Page: 17 of 18

THERMOPLASTIC POLYESTER ELASTOMER

Salt solutions

- ✓ Sodium Chloride solution (10% by mass), 23°C
- X Sodium Hypochlorite solution (10% by mass), 23°C
- ✓ Sodium Carbonate solution (20% by mass), 23°C
- ✓ Sodium Carbonate solution (2% by mass), 23°C
- ✓ Zinc Chloride solution (50% by mass), 23°C

Other

- ✓ Ethyl Acetate, 23°C
- X Hydrogen peroxide, 23°C
- X DOT No. 4 Brake fluid, 130°C
- **★** Ethylene Glycol (50% by mass) in water, 108°C
- ✓ 50% Oleic acid + 50% Olive Oil, 23°C
- ✓ Water, 23°C
- ✓ Water, 90°C
- ✓ Phenol solution (5% by mass), 23°C

Symbols used:

✓ possibly resistant

Defined as: Supplier has sufficient indication that contact with chemical can be potentially accepted under the intended use conditions and expected service life. Criteria for assessment have to be indicated (e.g. surface aspect, volume change, property change).

x not recommended - see explanation

Defined as: Not recommended for general use. However, short-term exposure under certain restricted conditions could be acceptable (e.g. fast cleaning with thorough rinsing, spills, wiping, vapor exposure).

Printed: 2025-05-30 Page: 18 of 18

Revised: 2025-04-17 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.